Home » Uncategorized » New Manuscript Published: Selective base excision repair of DNA damage by the non‐base‐flipping DNA glycosylase AlkC.

New Manuscript Published: Selective base excision repair of DNA damage by the non‐base‐flipping DNA glycosylase AlkC.

New Manuscript Published: Selective base excision repair of DNA damage by the non‐base‐flipping DNA glycosylase AlkC.

The preservation of genomic integrity performed by DNA repair machinery is crucial for living organisms, and malfunctions in DNA repair machinery can have far-reaching and devastating effects on a cell’s ability to attain precise DNA replication, properly regulate cell differentiation and self-renewal, and to regulate cell growth and apoptosis, among other important cellular functions. Mutations of critical residues in DNA repair proteins can drastically reduce DNA repair capability in cells, allowing for a build-up of genomic mutations. Inherited variants in DNA repair proteins such as glycosylase MUTYH have been linked to a predisposition to tumors in patients with disease MUTYH Associated Polyposis (MAP). The David Lab is interested in delineating DNA repair mechanisms to help shed light on the etiology of cancer and other diseases, providing mechanistic and structural information that may be used, for example, to design drug molecules targeting DNA repair proteins.

New work from the David Lab examined the selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC, which primarily targets alkylated-DNA damage product N3-methyladenine (3mA). This work details how AlkC selects for and excises 3mA with its non-base-flipping mechanism. The authors carried out a comprehensive phylogenetic, biochemical, and structural comparison of AlkC and AlkD proteins for comparison, which shows, notably, characteristics important for substrate specificity and why bulkier substrates are not preferred. Interestingly, AlkC’s excision mechanism involves using HEAT-like repeat domains and in most cases Ig-like domains to introduce a kink in the target DNA, helping to expose the target nucleobase, allowing for subsequent insertion of the enzyme active site to excise its target.

Click here to read more about AlkC’s non-base-flipping mechanism.

 

Source:

The EMBO Journal 

 

RSS Science Daily News

  • Mechanism found to determine which memories last March 28, 2024
    Neuroscientists have established in recent decades the idea that some of each day's experiences are converted by the brain into permanent memories during sleep the same night. Now, a new study proposes a mechanism that determines which memories are tagged as important enough to linger in the brain until sleep makes them permanent.
  • Alcohol raises heart disease risk, particularly among women March 28, 2024
    Young to middle-aged women who reported drinking eight or more alcoholic beverages per week--more than one per day, on average--were significantly more likely to develop coronary heart disease compared with those who drank less, finds a study presented at the American College of Cardiology's Annual Scientific Session. The risk was highest among both men and […]
  • Unlocking supernova stardust secrets March 28, 2024
    New research has discovered a rare dust particle trapped in an ancient extra-terrestrial meteorite that was formed by a star other than our sun.
  • Long-period oscillations control the Sun's differential rotation March 27, 2024
    The interior of the Sun does not rotate at the same rate at all latitudes. The physical origin of this differential rotation is not fully understood. It turns out, long-period solar oscillations discovered in 2021 play a crucial role in controlling the Sun's rotational pattern. The long-period oscillations are analogous to the baroclinically unstable waves […]
  • Artificial reef designed by MIT engineers could protect marine life, reduce storm damage March 27, 2024
    Engineers designed an 'architected' reef that can mimic the wave-buffering effects of natural reefs while providing pockets for marine life. The sustainable and cost-saving structure could dissipate more than 95 percent of incoming wave energy using a small fraction of the material normally needed.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616