Home » Uncategorized » Just Accepted Manuscript: S K-edge XAS Studies of the Effect of DNA Binding on the [Fe4S4] Site in EndoIII and MutY

Just Accepted Manuscript: S K-edge XAS Studies of the Effect of DNA Binding on the [Fe4S4] Site in EndoIII and MutY


7/18/2017

Check out the latest manuscript from the David Lab and collaborators: S K-edge XAS Studies of the Effect of DNA Binding on the [Fe4S4] Site in EndoIII and MutY, which was recently accepted for publication in JACS. In this work, the iron-sulfur clusters of DNA repair glycosylases Endonuclease III and MutY were examined using S K-edge X-ray Absorption Spectroscopy (XAS) in order to investigate DNA binding and solvation effects on Fe-S bond covalencies.

Click below to view the manuscript:

http://pubs.acs.org/doi/abs/10.1021/jacs.7b03966


 

RSS Science Daily News

  • New circuit boards can be repeatedly recycled April 26, 2024
    Researchers have developed a new PCB that performs on par with traditional materials and can be recycled repeatedly with negligible material loss. Researchers used a solvent that transforms a type of vitrimer -- a cutting-edge class of polymer -- into a jelly-like substance without damage, allowing solid components to be plucked out for reuse or […]
  • Using stem cell-derived heart muscle cells to advance heart regenerative therapy April 26, 2024
    Regenerative heart therapies involve transplanting cardiac muscle cells into damaged areas of the heart to recover lost function. However, the risk of arrhythmias following this procedure is reportedly high. In a recent study, researchers tested a novel approach that involves injecting 'cardiac spheroids,' cultured from human stem cells, directly into damaged ventricles. The highly positive […]
  • Researchers advance detection of gravitational waves to study collisions of neutron stars and black holes April 26, 2024
    Researchers co-led a study that will improve the detection of gravitational waves--ripples in space and time.
  • Climate change could become the main driver of biodiversity decline by mid-century April 25, 2024
    Global biodiversity has declined between 2% and 11% during the 20th century due to land-use change alone, according to a large multi-model study. Projections show climate change could become the main driver of biodiversity decline by the mid-21st century.
  • Food in sight? The liver is ready! April 25, 2024
    What happens in the body when we are hungry and see and smell food? A team of researchers has now been able to show in mice that adaptations in the liver mitochondria take place after only a few minutes. Stimulated by the activation of a group of nerve cells in the brain, the mitochondria of […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616