Home » Nikole Tamayo

Nikole Tamayo

Personal Information

Name: Nikole Tamayo

Education: Bachelor’s of Science in Chemistry, ACS Certified in Biochemistry

Minor in Biology, Southern Oregon University

From: Las Vegas, NV

Joined the David Lab: January 2020

Enjoys outside of lab: Video games, bullet journaling, and hiking

Research in the David Lab:

In DNA, guanine is the most susceptible to oxidation and its oxidation product is 8-oxo-7,8-dihydro-oxoguanine (OG). The Hoogsteen face of OG is similar to thymine (T) so during replication adenine (A) is misincorporated and after another round of replication results in a G:C to T:A transversion mutation. MutY is a DNA base excision repair enzyme that removes A from OG. Part of the enzyme that is theorized to recognize DNA lesions and facilitate repair is the iron-sulfur cluster. Nikole is investigating the role of the iron-sulfur cluster by examining “clusterless” enzymes, enzymes that do not contain the iron-sulfur cluster based on sequence homology. The lack of the iron-sulfur cluster suggests that it may not be necessary for DNA repair and recognition.

Previous Research Experience:

Nikole participated in two summer research internships while attending Southern Oregon University. At the Medical University of South Carolina, Nikole learned about hematopoietic stem cells and their ability to differentiate into many different cell types including blood cells, mast cells, and osteoclasts. Nikole learned how to culture specialized cells and image them, process tissues, section tissues, immunohistochemistry staining for tissues and stem cells, and bone marrow extraction from mice and staining for flow cytometry. At the University of Arizona, Nikole learned about short and long cell signaling in plants how errors in the clavata-wuschel pathway can affect the meristem and the fruit of plants in Arabidopsis or tomatoes. Nikole learned how to extract plant DNA, create polymerase chain reaction methods for specific primers, and interpret and image gels from gel electrophoresis. For Nikole’s undergraduate research at Southern Oregon University, she investigated the stability of epinephrine under various environmental conditions. She adapted a previously published method on quantifying the degradation products of epinephrine using high performance liquid chromatography and how to analyze the results to yield relative concentrations of epinephrine and its degradation products.

RSS Science Daily News

  • The bright yellow worm that turns ocean poison into golden survival crystals August 27, 2025
    Deep beneath the Pacific Ocean, a bright yellow worm thrives where no other animals dare, in toxic hydrothermal vents saturated with arsenic and sulfide. By cleverly turning these poisons into a golden mineral once prized by Renaissance painters, the worm neutralizes the deadly threat and survives in one of Earth’s most hostile habitats. Scientists say […]
  • The ancient oxygen flood that forever changed life in the oceans August 27, 2025
    Ancient forests may have fueled a deep-sea oxygen boost nearly 390 million years ago, unlocking evolutionary opportunities for jawed fish and larger marine animals. New isotopic evidence shows that this permanent oxygenation marked a turning point in Earth’s history — a reminder of how fragile the ocean’s oxygen balance remains today.
  • Scientists just created spacetime crystals made of knotted light August 27, 2025
    Researchers have developed a blueprint for weaving hopfions—complex, knot-like light structures—into repeating spacetime crystals. By exploiting two-color beams, they can generate ordered chains and lattices with tunable topology, potentially revolutionizing data storage, communications, and photonic processing.
  • Tiny hologram inside a fiber lets scientists control light with incredible precision August 27, 2025
    Researchers in Germany have unveiled the Metafiber, a breakthrough device that allows ultra-precise, rapid, and compact control of light focus directly within an optical fiber. Unlike traditional systems that rely on bulky moving parts, the Metafiber uses a tiny 3D nanoprinted hologram on a dual-core fiber to steer light by adjusting power between its cores. […]
  • This tiny iron catalyst could transform the future of clean energy August 27, 2025
    Hydrogen fuel cells could power cars, devices, and homes with nothing but water as a byproduct—but platinum’s cost holds them back. Chinese researchers have now unveiled a breakthrough iron-based catalyst that could rival platinum while boosting efficiency and durability. With its clever “inner activation, outer protection” design, this new catalyst not only reduces harmful byproducts […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616