Home » Merve Demir

Merve Demir

Merve Demir

 

Education:

B.S. Chemical Engineering, B.S. Chemistry, Bogazici University 2016

From: Istanbul, Turkey

Joined the David Lab: January 2017

Outside of lab: I love traveling, hiking, cooking and spending time with my family and friends.

 

 

Research in David Lab:

My work in the David lab focuses on elucidating the working mechanism of DNA glycosylase MutY. This enzyme can recognize the OG:A mispair and cleave the adenine from the DNA allowing other enzymes in the base excision repair pathway to restore the integrity of the DNA. Deficiency in repair of the OG:A mispair has been linked to a syndrome known as MUTYH-Associated Polyposis (MAP) that predisposes individuals to colorectal cancer. By elucidating the mechanism of the enzyme, we can gain insight into how MAP variants related to this syndrome have altered activities.

Recently proposed mechanism of the enzyme by the David lab involves formation of a covalent intermediate that stabilizes the oxacarbenium ion intermediate after the cleavage of the adenine. This allows release of the adenine through an exit channel in the active site. In order to confirm the formation of the covalent intermediate and the mode of release of the adenine from the active site, I use a range of different experimental techniques from synthesis of transition state analogs to biochemical and crystallographic studies of the enzyme.

Previous Research Experience:

As an undergrad, I worked in Dr. Duygu Avci’s lab at Bogazici University to synthesize a phophonate containing dental monomer with properties such as high polymerization rate, hydrolytic stability and ability to form favorable interactions with the tooth material. I also worked in Fujimoto Research Group at Keio University as a summer trainee where I worked on solid and solution phase synthesis of fluorescent-labeled lipopeptide as TLR2 ligand. In my senior year, I worked in Aviyente Research Group at Bogazici University doing quantum mechanical calculations of Diels-Alder reactions in ionic liquids and in Pemra Doruker’s lab at Bogazici University exploring ligand binding sites of glycolytic enzymes in different species by using computational solvent mapping.

RSS Science Daily News

  • New Orleans is sinking—and so are its $15 billion flood defenses June 29, 2025
    Parts of New Orleans are sinking at alarming rates — including some of the very floodwalls built to protect it. A new satellite-based study finds that some areas are losing nearly two inches of elevation per year, threatening the effectiveness of the city's storm defenses.
  • Record-breaking 10-billion-year radio halo just rewrote the universe’s origin story June 28, 2025
    A newly discovered radio halo, 10 billion light-years away, reveals that galaxy clusters in the early universe were already steeped in high-energy particles. The finding hints at ancient black hole activity or cosmic particle collisions fueling this energy.
  • A mysterious mineral in asteroid Ryugu may rewrite planetary history June 28, 2025
    A surprising discovery from a tiny grain of asteroid Ryugu has rocked scientists' understanding of how our Solar System evolved. Researchers found djerfisherite—a mineral typically born in scorching, chemically reduced conditions and never before seen in Ryugu-like meteorites—inside a sample returned by Japan’s Hayabusa2 mission. Its presence suggests either Ryugu once experienced unexpectedly high temperatures […]
  • A giant pulse beneath Africa could split the continent — and form an ocean June 27, 2025
    Beneath the Afar region in Ethiopia, scientists have discovered pulsing waves of molten rock rising from deep within the Earth — a geological heartbeat that could eventually split Africa in two. These rhythmic surges of mantle material are helping to stretch and thin the continent’s crust, setting the stage for a new ocean to form […]
  • World’s largest camera just snapped the Universe in 3,200 megapixels June 27, 2025
    The LSST camera at the Vera C. Rubin Observatory has released its jaw-dropping first images, each capturing 45 times the area of the full moon in one shot. Over the next ten years, this cosmic giant will scan the southern sky in ultra-HD, helping scientists uncover everything from asteroids to the secrets of dark energy.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616