Home » Cindy Khuu

Cindy Khuu

Personal Information

Education: B.S. Molecular Biology, University of California, San Diego 2016

From: San Francisco, California

Joined the David Lab:  March 2017

Outside of lab: Outside of lab, I enjoy going to the beach (while using proper sunscreen – beware of DNA damage!), eating, and pretending I can do photography.

LinkedIn

 

Research Experience

Research in David Lab

My main project in the lab focuses on the interdomain connector (IDC) of mammalian homologs of the adenine glycosylase MUTYH. Mutations in the MUTYH gene are known to cause MUTYH associated polyposis (MAP) and contribute to an individual’s predisposition to colorectal cancer. These mutations are located throughout the protein, including the IDC. In the prokaryotic homologs, MutY, this region of the protein wraps around the DNA duplex upon MutY binding. The mammalian homologs have an extended interdomain linker, and this region is also known to be the docking site of various protein-protein interactions involving MUTYH. These higher eukaryotic homologs of MUTYH, including human and mouse, also possess a second metal cofactor in this IDC region, a Zn2+ ion coordinated by residues that comprise a Zn2+ linchpin motif. My project utilizes these MAP variants in the MUTYH IDC to understand what interactions are necessary for downstream DNA repair and signaling and how perturbations to this Zn2+ linchpin motif can alter those roles.

Alignment of partial human MUTYH structure with bacterial MutY. N-terminal fragment crystal structure of human MUTYH (PDB 3N5N, green) with IDC (orange) aligned to homolog structure of E. coli MutY (PDB 5DPK, light blue) bound to DNA (grey), highlighting the significantly shorter IDC found in prokaryotes (dark blue). Established Zn2+ ion chelating ligands Cys318, Cys325 and Cys328 are depicted in red. The Fe-S cluster is depicted as orange and yellow spheres. (Figure from Nuñez et al. JACS 2018)

 

Publications from David Lab

Zhu, R.-Y.; Majumdar, C.; Khuu, C.; De Rosa, M.; Opresko, P. L.; David, S. S.; Kool, E. T. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity. ACS Cent. Sci. 2020, 6 (10), 1735–1742.

Jang, S.; Kumar, N.; Beckwitt, E.C.; Kong, M.; Fouquerel, E.; Rapic-Otrin, V.; Prasad, R.; Watkins, S.C.; Khuu, C.; Majumdar, C.; David, S.S.; Wilson, S.H.; Bruchez, M.P.; Opresko, P.L.; Van Houten, B. Damage sensor role of UV-DDB during base excision repair. Nat. Struct. Mol. Biol. 2019, 26695–703.

Nuñez, N.N.; Khuu, C.; Babu, C.S.; Bertolani, S.J.; Rajavel, A.N.; Spear, J.E.; Armas, J.A.; Wright, J.D.; Siegel, J.B.; Lim, C.; David, S.S. The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn2+ Ligands and Roles in Damage Recognition and Repair. J. Am. Chem. Soc. 2018, 140, 13260-13271.

Majumdar, C.; Nuñez, N. N.; Raetz, A. G.; Khuu, C.; David, S. S., Chapter Three – Cellular Assays for Studying the Fe–S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs. In Methods in Enzymology, David, S. S., Ed. Academic Press: 2018; Vol. 599, pp 69-99.

 

Previous Research Experience

My first research experience was at Sutro Biopharma, a biotechnology company in South San Francisco, where I first learned molecular biology techniques and fell in love with research. During undergrad, I was a UC LEADS scholar, which funded me to work in different labs during the school year and for two summers. At UCSD, I worked in Dr. Eva-Maria Collins’s lab, where I helped coordinate data collection and analysis of a regeneration assay to study planarian regeneration in the presence of different toxins and toxicants. During summer 2015, I worked with Dr. Jorge Torres at UCLA to look at how an E3 ubiquitin ligase could be involved in mitosis and cancer progression.

 

Publications from Previous Research

Hagstrom, D.; Cochet-Escartin, O.; Zhang, S.; Khuu, C.; Collins, E.-M. S., Freshwater Planarians as an Alternative Animal Model for Neurotoxicology. Toxicological Sciences 2015, 147 (1), 270-285.

Gholkar, A. A.; Cheung, K.; Williams, K. J.; Lo, Y.-C.; Hamideh, S. A.; Nnebe, C.; Khuu, C.; Bensinger, S. J.; Torres, J. Z., Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division. The Journal of Biological Chemistry 2016, 291 (33), 17001-17008.

 

Updated: April 13, 2021

RSS Science Daily News

  • Why cats prefer sleeping on their left side—and how it might help them survive June 26, 2025
    Cats overwhelmingly choose to sleep on their left side, a habit researchers say could be tied to survival. This sleep position activates the brain’s right hemisphere upon waking, perfect for detecting danger and reacting swiftly. Left-side snoozing may be more than a preference; it might be evolution’s secret trick.
  • Quantum breakthrough: ‘Magic states’ now easier, faster, and way less noisy June 26, 2025
    Quantum computing just got a significant boost thanks to researchers at the University of Osaka, who developed a much more efficient way to create "magic states" a key component for fault-tolerant quantum computers. By pioneering a low-level, or "level-zero," distillation method, they dramatically reduced the number of qubits and computational resources needed, overcoming one of […]
  • Can these endangered lizards beat the heat? Scientists test bold relocation plan June 26, 2025
    South Australia’s tiny pygmy bluetongue skink is baking in a warming, drying homeland, so Flinders University scientists have tried a bold fix—move it. Three separate populations were shifted from the parched north to cooler, greener sites farther south. At first the lizards reacted differently—nervous northerners diving for cover, laid-back southerners basking in damp burrows—but after […]
  • Skull study shows Chicago's rodents are rapidly evolving June 26, 2025
    Urban wildlife is evolving right under our noses — and scientists have the skulls to prove it. By examining over a century’s worth of chipmunk and vole specimens from Chicago, researchers discovered subtle yet significant evolutionary changes in these rodents’ skulls, seemingly in response to city life.
  • Scientists finally know why early human migrations out of Africa failed June 26, 2025
    New research reveals why early human attempts to leave Africa repeatedly failed—until one group succeeded spectacularly around 50,000 years ago. Scientists discovered that before this successful migration, humans began using a much broader range of environments across Africa, from dense forests to harsh deserts. This ecological flexibility, developed over thousands of years, gave them the […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616