Home » Chandrima Majumdar

Chandrima Majumdar

Chandrima Majumdar

LinkedIn

Education:

B.S. Chemistry (Hons.) St. Stephen’s College, Delhi, India

M.S. Chemistry University of Hyderabad, Hyderabad, India

From: Bangalore, India

Joined the David Lab: January 2015

Outside lab: I enjoy cooking, traveling, reading and creative

activities like painting and craftwork.

 

Research in David Lab:

My thesis project in the David lab is focused on understanding how MutY identifies OG:A mispairs within DNA and distinguishes it from an undamaged T:A base pair. This is a challenging task for the enzyme since OG:A mispairs are innocuous and resemble a normal T:A base-pair so closely, that they do not distort the DNA helix at all. However, the failure of MutY to locate all the OG:A mispairs and initiate their repair can be disastrous as their replication forms normal, undamaged, but mutated T:A base-pairs that can no longer be corrected by the DNA repair machinery. As a result, MutY has the unique and crucial role of weeding out and initiating the repair of the OG:A mispair, while being able to distinguish it from the vast excess of undamaged DNA. I use structural analogs of OG and A to study the process by which MutY recognizes these mispairs. The analogs have functional groups with modified steric, hydrogen bonding and electronic properties that help us understand the role of these features in MutY’s ability to identify the lesion and excise the A.

 

Links to Papers from David Lab:

Majumdar, C.; Nuñez, N. N.; Raetz, A. G.; Khuu, C.; David, S. S., Chapter Three – Cellular Assays for Studying the Fe–S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs. In Methods in Enzymology, David, S. S., Ed. Academic Press: 2018; Vol. 599, pp 69-99.

Nuñez, N. N.; Majumdar, C.; Lay, K. T.; David, S. S., Fe–S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements. In Methods in Enzymology, Academic Press: 2018.

Manlove, A. H.; McKibbin, P. L.; Doyle, E. L.; Majumdar, C.; Hamm, M. L.; David, S. S., Structure–Activity Relationships Reveal Key Features of 8-Oxoguanine: A Mismatch Detection by the MutY Glycosylase. ACS Chemical Biology 2017, 12 (9), 2335-2344.

 

Previous Research Experience:

My previous research experience includes working as a summer researcher in Dr. Debashis Chakraborty’s lab at the Indian Institute of Technology Madras on developing a mild and chemoselective method for oxidizing aldehydes. I also worked on a summer project in Dr. Suvarn Kulkarni’s lab at the Indian Institute of Technology Bombay on the synthesis of carbohydrate building blocks as starting materials. While pursuing my M.Sc. at the University of Hyderabad , I did research with Dr. Rengarajan Balamurugan on the synthesis of substituted pyridines from alkenes using gold and silver catalysts.

http://onlinelibrary.wiley.com/doi/10.1002/aoc.1787/full

RSS Science Daily News

  • Change in gene code may explain how human ancestors lost tails February 28, 2024
    A genetic change in our ancient ancestors may partly explain why humans don't have tails like monkeys.
  • New study links placental oxygen levels to fetal brain development February 27, 2024
    A new study shows oxygenation levels in the placenta, formed during the last three months of fetal development, are an important predictor of cortical growth (development of the outermost layer of the brain or cerebral cortex) and is likely a predictor of childhood cognition and behavior.
  • Significant glacial retreat in West Antarctica began in 1940s February 27, 2024
    Among the vast expanse of Antarctica lies the Thwaites Glacier, the world's widest glacier measuring about 80 miles on the western edge of the continent. Despite its size, the massive landform is losing about 50 billion tons of ice more than it is receiving in snowfall, which places it in a precarious position in respect […]
  • New world record for CIGS solar cells February 26, 2024
    A new record for electrical energy generation from CIGS solar cells has been reached. Scientists have achieved a 23.64 percent efficiency.
  • A novel method for easy and quick fabrication of biomimetic robots with life-like movement February 26, 2024
    Ultraviolet-laser processing is a promising technique for developing intricate microstructures, enabling complex alignment of muscle cells, required for building life-like biohybrid actuators. Compared to traditional complex methods, this innovative technique enables easy and quick fabrication of microstructures with intricate patterns for achieving different muscle cell arrangements, paving the way for biohybrid actuators capable of complex, […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616