Home » Cindy Khuu

Cindy Khuu

Personal Information

Education: B.S. Molecular Biology, University of California, San Diego 2016

From: San Francisco, California

Joined the David Lab:  March 2017

Outside of lab: Outside of lab, I enjoy going to the beach (while using proper sunscreen – beware of DNA damage!), eating, and pretending I can do photography.



Research Experience

Research in David Lab

My main project in the lab focuses on the interdomain connector (IDC) of mammalian homologs of the adenine glycosylase MUTYH. Mutations in the MUTYH gene are known to cause MUTYH associated polyposis (MAP) and contribute to an individual’s predisposition to colorectal cancer. These mutations are located throughout the protein, including the IDC. In the prokaryotic homologs, MutY, this region of the protein wraps around the DNA duplex upon MutY binding. The mammalian homologs have an extended interdomain linker, and this region is also known to be the docking site of various protein-protein interactions involving MUTYH. These higher eukaryotic homologs of MUTYH, including human and mouse, also possess a second metal cofactor in this IDC region, a Zn2+ ion coordinated by residues that comprise a Zn2+ linchpin motif. My project utilizes these MAP variants in the MUTYH IDC to understand what interactions are necessary for downstream DNA repair and signaling and how perturbations to this Zn2+ linchpin motif can alter those roles.

Alignment of partial human MUTYH structure with bacterial MutY. N-terminal fragment crystal structure of human MUTYH (PDB 3N5N, green) with IDC (orange) aligned to homolog structure of E. coli MutY (PDB 5DPK, light blue) bound to DNA (grey), highlighting the significantly shorter IDC found in prokaryotes (dark blue). Established Zn2+ ion chelating ligands Cys318, Cys325 and Cys328 are depicted in red. The Fe-S cluster is depicted as orange and yellow spheres. (Figure from Nuñez et al. JACS 2018)


Publications from David Lab

Zhu, R.-Y.; Majumdar, C.; Khuu, C.; De Rosa, M.; Opresko, P. L.; David, S. S.; Kool, E. T. Designer Fluorescent Adenines Enable Real-Time Monitoring of MUTYH Activity. ACS Cent. Sci. 2020, 6 (10), 1735–1742.

Jang, S.; Kumar, N.; Beckwitt, E.C.; Kong, M.; Fouquerel, E.; Rapic-Otrin, V.; Prasad, R.; Watkins, S.C.; Khuu, C.; Majumdar, C.; David, S.S.; Wilson, S.H.; Bruchez, M.P.; Opresko, P.L.; Van Houten, B. Damage sensor role of UV-DDB during base excision repair. Nat. Struct. Mol. Biol. 2019, 26695–703.

Nuñez, N.N.; Khuu, C.; Babu, C.S.; Bertolani, S.J.; Rajavel, A.N.; Spear, J.E.; Armas, J.A.; Wright, J.D.; Siegel, J.B.; Lim, C.; David, S.S. The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn2+ Ligands and Roles in Damage Recognition and Repair. J. Am. Chem. Soc. 2018, 140, 13260-13271.

Majumdar, C.; Nuñez, N. N.; Raetz, A. G.; Khuu, C.; David, S. S., Chapter Three – Cellular Assays for Studying the Fe–S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs. In Methods in Enzymology, David, S. S., Ed. Academic Press: 2018; Vol. 599, pp 69-99.


Previous Research Experience

My first research experience was at Sutro Biopharma, a biotechnology company in South San Francisco, where I first learned molecular biology techniques and fell in love with research. During undergrad, I was a UC LEADS scholar, which funded me to work in different labs during the school year and for two summers. At UCSD, I worked in Dr. Eva-Maria Collins’s lab, where I helped coordinate data collection and analysis of a regeneration assay to study planarian regeneration in the presence of different toxins and toxicants. During summer 2015, I worked with Dr. Jorge Torres at UCLA to look at how an E3 ubiquitin ligase could be involved in mitosis and cancer progression.


Publications from Previous Research

Hagstrom, D.; Cochet-Escartin, O.; Zhang, S.; Khuu, C.; Collins, E.-M. S., Freshwater Planarians as an Alternative Animal Model for Neurotoxicology. Toxicological Sciences 2015, 147 (1), 270-285.

Gholkar, A. A.; Cheung, K.; Williams, K. J.; Lo, Y.-C.; Hamideh, S. A.; Nnebe, C.; Khuu, C.; Bensinger, S. J.; Torres, J. Z., Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division. The Journal of Biological Chemistry 2016, 291 (33), 17001-17008.


Updated: April 13, 2021

RSS Science Daily News

  • Down goes antimatter! Gravity's effect on matter's elusive twin is revealed September 27, 2023
    For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.
  • Decreasing biodiversity may promote spread of viruses September 27, 2023
    How are environmental changes, loss of biodiversity, and the spread of pathogens connected? The answer is a puzzle. Researchers have now described one piece of that puzzle, showing that the destruction of tropical rainforests harms the diversity of mosquito species. At the same time, more resilient species of mosquitoes become more prevalent -- which also […]
  • Study sheds new light on strange lava worlds September 27, 2023
    In a new study, scientists have shown that sweeping molten oceans have a large influence on the observed properties of hot rocky Super-Earths, such as their size and evolutionary path.
  • New insights into the atmosphere and star of an exoplanet September 25, 2023
    A new study of the intriguing TRAPPIST-1 exoplanetary system has demonstrated the complex interaction between the activity of the system's star and its planetary features.
  • Did life exist on Mars? Other planets? With AI's help, we may know soon September 25, 2023
    Scientists have discovered a simple and reliable test for signs of past or present life on other planets -- 'the holy grail of astrobiology.' Researchers report that, with 90% accuracy, their artificial intelligence-based method distinguished modern and ancient biological samples from those of abiotic origin.


Dr. Sheila S. David

Department of Chemistry
One Shields Ave.
Davis, CA 95616