Home » Joshua Bumgarner

Joshua Bumgarner

Joshua Bumgarner

LinkedIn

Education:

B.A. in Chemistry from Willamette University, Salem OR, 2017

From: Walla Walla WA

Joined David Lab: April 2018

Outside of lab: I like to go on hikes or spend time with my big goofy labradoodle. I’m also a big foodie who loves to try new restaurants and drinks

Research in David Lab:

BER glycosylases are usually highly specific in the type of damage they repair, and when they repair it. The NEIL family of glycosylases are unusual in their ability to work on a multitude of different DNA lesions, and can often do so in DNA contexts outside of canonical B-DNA. I work to understand what dictates when a NEIL enzyme repairs a lesion, and what influences when it when it does not. I have used a variety of different lesions to develop structure activity relationships between specific bases to better learn what structures of the base are required for recognition and repair, what which impair NEIL activity. In addition, most enzymatic assays are performed in dilute buffer systems, however this is not necessarily the case in a cell. The impact of the crowded environment of a cell, known as macromolecular crowding, can significantly impact enzymatic activity. I have been working to incorporate this into our enzyme assays and understand how it changes our understanding of the enzymes behavior between a test tube and the cellular environment.

Previous Research Experience:

I previously studied macromolecular crowding under Dr. Todd Silverstein at Willamette university, working to understand the influence of crowding agents on the pH profile of alcohol dehydrogenase, and how it altered the construction and pKa’s of the active site. I have also worked at the Hawaii Institute of Marine Biology studying the ability of coral to acclimate to increasing water temperatures over the past 40 years, and the inventible climb in ocean temperatures in the years to come.

RSS Science Daily News

  • This triple-layer sunlight catalyst supercharges green hydrogen by 800% June 23, 2025
    Researchers in Sweden have developed a powerful new material that dramatically boosts the ability to create hydrogen fuel from water using sunlight, making the process eight times more effective than before. This breakthrough could be key to fueling heavy transport like ships and planes with clean, renewable energy.
  • From cursed tomb fungus to cancer cure: Aspergillus flavus yields potent new drug June 23, 2025
    In a remarkable twist of science, researchers have transformed a fungus long associated with death into a potential weapon against cancer. Found in tombs like that of King Tut, Aspergillus flavus was once feared for its deadly spores. Now, scientists at Penn and several partner institutions have extracted a new class of molecules from it—called […]
  • Quantum dice: Scientists harness true randomness from entangled photons June 23, 2025
    Scientists at NIST and the University of Colorado Boulder have created CURBy, a cutting-edge quantum randomness beacon that draws on the intrinsic unpredictability of quantum entanglement to produce true random numbers. Unlike traditional methods, CURBy is traceable, transparent, and verifiable thanks to quantum physics and blockchain-like protocols. This breakthrough has real-world applications ranging from cybersecurity […]
  • Affordances in the brain: The human superpower AI hasn’t mastered June 23, 2025
    Scientists at the University of Amsterdam discovered that our brains automatically understand how we can move through different environments—whether it's swimming in a lake or walking a path—without conscious thought. These "action possibilities," or affordances, light up specific brain regions independently of what’s visually present. In contrast, AI models like ChatGPT still struggle with these […]
  • Rice University breakthrough keeps CO₂ electrolyzers running 50x longer June 22, 2025
    A Rice University team discovered that bubbling CO₂ through a mild acid dramatically improves the lifespan and efficiency of electrochemical devices that convert CO₂ into useful fuels. This simple trick prevents salt buildup—a major barrier to commercialization—by altering local chemistry just enough to keep salts dissolved and flowing. The result? A device that ran for […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616