Home » Melody Malek

Melody Malek

Melody Malek

Education:

B.S. Biological Sciences, University of California, Irvine, 2019

From: Milpitas, California

Joined David Lab: January 2021

Outside of lab: I enjoy reading, watching tv, and cooking

Research in David Lab:

DNA is prone to oxidative damage by both exogenous and endogenous sources. DNA damage must be repaired to maintain genomic integrity, and the base excision repair (BER) pathway has evolved to recognize and initiate repair caused by oxidative damage. My projects involve the glycosylases hOGG1 and NEIL 1, 2, and 3. My work with hOGG1 involves synthetic organic chemistry to synthesize potent and specific nucleic acid based inhibitors of the enzyme. It has been previously demonstrated by our lab that certain transition state analogue mimics tightly bind hOGG1’s active site, but it has yet to be demonstrated that these analogues can inhibit the enzyme in a cellular context, which is what my work focuses on. My second project (involving NEILs 1, 2, and 3) involves understanding whether repair of oxidative damage by the NEILs is affected by oxidants such as hydrogen peroxide and potassium bromate in a cellular context.

Previous Research Experience:

As an undergrad, I worked in Dr. James Nowick’s lab for 2.5 years. My first project involved synthesizing fluorescent mimics of the amyloid beta peptide, the aggregation of which has been linked to the incidence of Alzheimer’s disease. My second project involved synthesizing fluorescent mimics of the peptidic antibiotic teixobactin, which shows no detectable resistance. This work led to a publication that details the mechanism by which teixobactin is able to localize to the lipid bilayer of gram-positive bacteria.

RSS Science Daily News

  • CRISPR-edited stem cells reveal hidden causes of autism June 14, 2025
    A team at Kobe University has created a game-changing resource for autism research: 63 mouse embryonic stem cell lines, each carrying a genetic mutation strongly associated with the disorder. By pairing classic stem cell manipulation with precise CRISPR gene editing, they ve built a standardized platform that mirrors autism-linked genetic conditions in mice. These models […]
  • Africa's pangolin crisis: The delicacy that's driving a species to the brink June 14, 2025
    Study suggests that appetite for bushmeat -- rather than black market for scales to use in traditional Chinese medicine -- is driving West Africa's illegal hunting of one of the world's most threatened mammals. Interviews with hundreds of hunters show pangolins overwhelmingly caught for food, with majority of scales thrown away. Survey work shows pangolin […]
  • Scientists just solved a 40-year-old mystery about quasicrystals June 14, 2025
    Scientists at the University of Michigan have unlocked a long-standing mystery about quasicrystals exotic materials that straddle the line between the orderly structure of crystals and the chaos of glass. These rare solids, which once seemed to break the rules of physics, are now shown to be fundamentally stable through cutting-edge quantum simulations. The findings […]
  • Webb space telescope reveals starburst galaxies that lit up the early universe June 13, 2025
    Data from NASA's James Webb Space Telescope has revealed dozens of small galaxies that played a starring role in a cosmic makeover that transformed the early universe into the one we know today.
  • The 10,000-mile march through fire that made dinosaurs possible June 13, 2025
    Despite Earth's most devastating mass extinction wiping out over 80% of marine life and half of land species, a group of early reptiles called archosauromorphs not only survived but thrived, venturing across the supposedly lifeless tropics to eventually evolve into the dinosaurs and crocodiles we know today. Armed with a groundbreaking model dubbed TARDIS, researchers […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616