Home » Merve Demir

Merve Demir

Merve Demir

 

Education:

B.S. Chemical Engineering, B.S. Chemistry, Bogazici University 2016

From: Istanbul, Turkey

Joined the David Lab: January 2017

Outside of lab: I love traveling, hiking, cooking and spending time with my family and friends.

 

 

Research in David Lab:

My work in the David lab focuses on elucidating the working mechanism of DNA glycosylase MutY. This enzyme can recognize the OG:A mispair and cleave the adenine from the DNA allowing other enzymes in the base excision repair pathway to restore the integrity of the DNA. Deficiency in repair of the OG:A mispair has been linked to a syndrome known as MUTYH-Associated Polyposis (MAP) that predisposes individuals to colorectal cancer. By elucidating the mechanism of the enzyme, we can gain insight into how MAP variants related to this syndrome have altered activities.

Recently proposed mechanism of the enzyme by the David lab involves formation of a covalent intermediate that stabilizes the oxacarbenium ion intermediate after the cleavage of the adenine. This allows release of the adenine through an exit channel in the active site. In order to confirm the formation of the covalent intermediate and the mode of release of the adenine from the active site, I use a range of different experimental techniques from synthesis of transition state analogs to biochemical and crystallographic studies of the enzyme.

Previous Research Experience:

As an undergrad, I worked in Dr. Duygu Avci’s lab at Bogazici University to synthesize a phophonate containing dental monomer with properties such as high polymerization rate, hydrolytic stability and ability to form favorable interactions with the tooth material. I also worked in Fujimoto Research Group at Keio University as a summer trainee where I worked on solid and solution phase synthesis of fluorescent-labeled lipopeptide as TLR2 ligand. In my senior year, I worked in Aviyente Research Group at Bogazici University doing quantum mechanical calculations of Diels-Alder reactions in ionic liquids and in Pemra Doruker’s lab at Bogazici University exploring ligand binding sites of glycolytic enzymes in different species by using computational solvent mapping.

RSS Science Daily News

  • Cough medicine turned brain protector? Ambroxol may slow Parkinson’s dementia July 6, 2025
    Ambroxol, long used for coughs in Europe, stabilized symptoms and brain-damage markers in Parkinson’s dementia patients over 12 months, whereas placebo patients worsened. Those with high-risk genes even saw cognitive gains, hinting at real disease-modifying power.
  • Multisensory VR forest reboots your brain and lifts mood—study confirms July 6, 2025
    Immersing stressed volunteers in a 360° virtual Douglas-fir forest complete with sights, sounds and scents boosted their mood, sharpened short-term memory and deepened their feeling of nature-connectedness—especially when all three senses were engaged. Researchers suggest such multisensory VR “forest baths” could brighten clinics, waiting rooms and dense city spaces, offering a potent mental refresh where […]
  • Pregnancy’s 100-million-year secret: Inside the placenta’s evolutionary power play July 6, 2025
    A group of scientists studying pregnancy across six different mammals—from humans to marsupials—uncovered how certain cells at the mother-baby boundary have been working together for over 100 million years. By mapping gene activity in these cells, they found that pregnancy isn’t just a battle between mother and fetus, but often a carefully coordinated partnership. These […]
  • New tech tracks blood sodium without a single needle July 6, 2025
    Scientists have pioneered a new way to monitor sodium levels in the blood—without drawing a single drop. By combining terahertz radiation and optoacoustic detection, they created a non-invasive system that tracks sodium in real time, even through skin. The approach bypasses traditional barriers like water interference and opens up potential for fast, safe diagnostics in […]
  • Defying physics: This rare crystal cools itself using pure magnetism July 6, 2025
    Deep in Chile’s Atacama Desert, scientists studied a green crystal called atacamite—and discovered it can cool itself dramatically when placed in a magnetic field. Unlike a regular fridge, this effect doesn’t rely on gases or compressors. Instead, it’s tied to the crystal’s unusual inner structure, where tiny magnetic forces get tangled in a kind of […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616