Home » Mo Hashemian

Mo Hashemian

Mo Hashemian

Education: B.S. Biological Sciences, University of California, Irvine, 2019 

From: Irvine, California

Joined David Lab: January 2021

Outside of lab: working out, watching TV

Research in David Lab:

In the lab, I utilize techniques in molecular and structural biology, protein biochemistry and enzymology. These skills were cultivated and applied in the process of solving the first full-length structure of an important human base excision repair glycosylase, MUTYH. This work has enabled us to characterize many functional features of the enzyme but has raised additional questions pertaining to the coordination of a zinc ion which is missing from the structure. My current work involves characterizing the structural motif that binds zinc, as well as characterizing naturally occurring cancer variants surrounding this motif. Our structure of MUTYH has also informed a second project, involving the potential discovery of a small molecule inhibitor that binds to a C-terminal substrate recognition motif, thereby diminishing enzymatic activity.

RSS Science Daily News

  • Overworked neurons burn out and fuel Parkinson’s disease September 3, 2025
    Overactivation of dopamine neurons may directly drive their death, explaining why movement-controlling brain cells degenerate in Parkinson’s. Mice with chronically stimulated neurons showed the same selective damage seen in patients, along with molecular stress responses. Targeting this overactivity could help slow disease progression.
  • Hidden viruses in our DNA could be medicine’s next big breakthrough September 3, 2025
    Scientists have decoded the 3D structure of an ancient viral protein hidden in our DNA. The HERV-K Env protein, found on cancer and autoimmune cells, has a unique shape that could unlock new diagnostics and therapies.
  • A simple metal could solve the world’s plastic recycling problem September 3, 2025
    Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin plastics—the single-use materials that make up much of our daily waste—into valuable oils, waxes, fuels, and more.
  • Central Asia’s last stable glaciers just started to collapse September 3, 2025
    Snowfall shortages are now destabilizing some of the world’s last resilient glaciers, as shown by a new study in Tajikistan’s Pamir Mountains. Using a monitoring station on Kyzylsu Glacier, researchers discovered that stability ended around 2018, when snowfall declined sharply and melt accelerated. The work sheds light on the Pamir-Karakoram Anomaly, where glaciers had resisted […]
  • Why Alzheimer’s attacks the brain’s memory hub first September 3, 2025
    Virginia Tech researchers are investigating how overloaded mitochondria in the brain’s memory circuits may spark early Alzheimer’s damage. Their work focuses on calcium signaling and how it might trigger breakdowns in the entorhinal cortex.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616