Home » Nikole Tamayo

Nikole Tamayo

Personal Information

Name: Nikole Tamayo

Education: Bachelor’s of Science in Chemistry, ACS Certified in Biochemistry

Minor in Biology, Southern Oregon University

From: Las Vegas, NV

Joined the David Lab: January 2020

Enjoys outside of lab: Video games, bullet journaling, and hiking

Research in the David Lab:

In DNA, guanine is the most susceptible to oxidation and its oxidation product is 8-oxo-7,8-dihydro-oxoguanine (OG). The Hoogsteen face of OG is similar to thymine (T) so during replication adenine (A) is misincorporated and after another round of replication results in a G:C to T:A transversion mutation. MutY is a DNA base excision repair enzyme that removes A from OG. Part of the enzyme that is theorized to recognize DNA lesions and facilitate repair is the iron-sulfur cluster. Nikole is investigating the role of the iron-sulfur cluster by examining “clusterless” enzymes, enzymes that do not contain the iron-sulfur cluster based on sequence homology. The lack of the iron-sulfur cluster suggests that it may not be necessary for DNA repair and recognition.

Previous Research Experience:

Nikole participated in two summer research internships while attending Southern Oregon University. At the Medical University of South Carolina, Nikole learned about hematopoietic stem cells and their ability to differentiate into many different cell types including blood cells, mast cells, and osteoclasts. Nikole learned how to culture specialized cells and image them, process tissues, section tissues, immunohistochemistry staining for tissues and stem cells, and bone marrow extraction from mice and staining for flow cytometry. At the University of Arizona, Nikole learned about short and long cell signaling in plants how errors in the clavata-wuschel pathway can affect the meristem and the fruit of plants in Arabidopsis or tomatoes. Nikole learned how to extract plant DNA, create polymerase chain reaction methods for specific primers, and interpret and image gels from gel electrophoresis. For Nikole’s undergraduate research at Southern Oregon University, she investigated the stability of epinephrine under various environmental conditions. She adapted a previously published method on quantifying the degradation products of epinephrine using high performance liquid chromatography and how to analyze the results to yield relative concentrations of epinephrine and its degradation products.

RSS Science Daily News

  • 'Dancing molecules' heal cartilage damage July 26, 2024
    New therapy uses synthetic nanofibers to mimic the natural signaling of a protein that is crucial for cartilage formation and maintenance. Researchers found that intensifying the motion of molecules within the nanofibers led to more components needed for regeneration. After just four hours, the treatment activated the gene expression necessary to generate cartilage. Therapy could […]
  • New understanding of fly behavior has potential application in robotics, public safety July 26, 2024
    Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out […]
  • Lampreys possess a 'jaw-dropping' evolutionary origin July 26, 2024
    Lampreys are one of only two living jawless vertebrates Jaws are formed by a key stem cell population called the neural crest New research reveals the gene regulatory changes that may explain morphological differences between jawed and jawless vertebrates.
  • Researchers develop state-of-the-art device to make artificial intelligence more energy efficient July 26, 2024
    Engineering researchers have demonstrated a state-of-the-art hardware device that could reduce energy consumption for artificial intelligent (AI) computing applications by a factor of at least 1,000.
  • New drug shows promise in clearing HIV from brain July 25, 2024
    An experimental drug originally developed to treat cancer may help clear HIV from infected cells in the brain, according to a new study. By targeting infected cells in the brain, drug may clear virus from hidden areas that have been a major challenge in HIV treatment.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616