Home » Robert Van Ostrand

Robert Van Ostrand

LinkedIn

Education:

B.S. Chemistry: Biochemistry, Honors, California State University Channel Islands 2016
A.A. General Studies: Natural Sciences, Ventura Community College 2013

Military: Served in the United States Marine Corps as a Rifleman and as Data Network Specialist, 2005-2013

From: Danville, IA

Joined the David Lab: January 2017

Outside of lab: I enjoy hanging out with my daughters and wife, working out, and camping.

 

Research in David Lab:

The existence of life on earth’s oxygen-rich environment necessitates oxidative DNA repair to maintain genome integrity, and organisms have evolved DNA repair proteins such as MutY to deal with this kind of DNA damage. My research in The David Lab involves determination of the target recognition mechanism of DNA repair protein MutY/MUTYH. Specifically, I am interested in how MutY is able to recognize and locate its target damage mutation, 8-oxo-guanine (8-OG) base-paired with adenine, from amongst the vast amount of undamaged DNA in a cell. MutY specifically cleaves the adenine base from this mutation, allowing for subsequent repair of the mismatch by other enzymes. This DNA damage, when left unrepaired, results in G:C to T:A transversions, damage which will impart far-reaching and devastating effects on an organism. To help answer this question, I am synthesizing an array of systematically modified DNA molecules and examining how MutY/MUTYH binding, kinetics, and cellular repair are affected by specific atomic changes in the modified DNA substrates.

Previous Research Experience:

I previously conducted research in Dr. Ahmed Awad’s Lab of the Chemistry Department at California State University Channel Islands, from 2013 – 2016. My research under Dr. Awad focused on the synthesis of putative antisense oligonucleotides which incorporate a guanidine backbone in place of RNA’s natural phosphodiester backbone. My work saw the synthesis of over 20 nucleoside compounds of varying bases A, U, and G. I additionally screened desired compounds and intermediates as antibacterial agents against 6 strains of bacteria, which led to the discovery of antibacterial activity against Neisseria meningitidis by 6 synthetic compounds. This work was published in Nucleosides, Nucleotides, & Nucleic Acids in 2017.

Van Ostrand, R.; Jacobsen, C.; Delahunty, A.; Stringer, C.; Noorbehesht, R.; Ahmed, H.; Awad, A. M., Synthesis and antibacterial activity of 5′-tetrachlorophthalimido and 5′-azido 5′-deoxyribonucleosides. Nucleosides, Nucleotides and Nucleic Acids 2017, 36 (3), 181-197.

Keywords: #ModifiedNucleosides #ModifiedOligonucleotides #NucleosideChemistry #OrganicSynthesis #Synthesis #DNARepair #DNA #Muty #Mutyh #8OG #DavidLab #UCDavis #UndergraduateResearch #TeachingAssistant #Chemistry #NMR #RobertVanOstrand #robertucdavis

RSS Science Daily News

  • First operating system for quantum networks March 12, 2025
    Researchers have announced the creation of the first operating system designed for quantum networks: QNodeOS. The research marks a major step forward in transforming quantum networking from a theoretical concept to a practical technology that could revolutionize the future of the internet.
  • Want to preserve biodiversity? Go big March 12, 2025
    Large, undisturbed forests are better for harboring biodiversity than fragmented landscapes, according to recent research. Ecologists agree that habitat loss and the fragmentation of forests reduces biodiversity in the remaining fragments. But ecologists don't agree whether it's better to focus on preserving many smaller, fragmented tracts of land or larger, continuous landscapes. The study comes […]
  • How climate change affects rain and floods March 12, 2025
    Climate change may lead to more precipitation and more intense floods. A new study shows that to understand the details of this relationship, it is important to distinguish between different types of rainfall and flood events -- namely, between short-term events that occur on a time scale of hours, and longer-term events that last several […]
  • Four tiny planets found orbiting one of our nearest stars March 11, 2025
    Astronomers have revealed new evidence that there are not just one but four tiny planets circling around Barnard's Star, the second-nearest star system to Earth.
  • Technique to manipulate water waves to precisely control floating objects March 11, 2025
    Where there's water, there are waves. But what if you could bend water waves to your will to move floating objects? Scientists have now developed a technique to merge waves in a water tank to produce complex patterns, such as twisting loops and swirling vortices. Some patterns acted like tweezers or a 'tractor beam' to […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616