Home » Robert Van Ostrand

Robert Van Ostrand

LinkedIn

Education:

B.S. Chemistry: Biochemistry, Honors, California State University Channel Islands 2016
A.A. General Studies: Natural Sciences, Ventura Community College 2013

Military: Served in the United States Marine Corps as a Rifleman and as Data Network Specialist, 2005-2013

From: Danville, IA

Joined the David Lab: January 2017

Outside of lab: I enjoy hanging out with my daughters and wife, working out, and camping.

 

Research in David Lab:

The existence of life on earth’s oxygen-rich environment necessitates oxidative DNA repair to maintain genome integrity, and organisms have evolved DNA repair proteins such as MutY to deal with this kind of DNA damage. My research in The David Lab involves determination of the target recognition mechanism of DNA repair protein MutY/MUTYH. Specifically, I am interested in how MutY is able to recognize and locate its target damage mutation, 8-oxo-guanine (8-OG) base-paired with adenine, from amongst the vast amount of undamaged DNA in a cell. MutY specifically cleaves the adenine base from this mutation, allowing for subsequent repair of the mismatch by other enzymes. This DNA damage, when left unrepaired, results in G:C to T:A transversions, damage which will impart far-reaching and devastating effects on an organism. To help answer this question, I am synthesizing an array of systematically modified DNA molecules and examining how MutY/MUTYH binding, kinetics, and cellular repair are affected by specific atomic changes in the modified DNA substrates.

Previous Research Experience:

I previously conducted research in Dr. Ahmed Awad’s Lab of the Chemistry Department at California State University Channel Islands, from 2013 – 2016. My research under Dr. Awad focused on the synthesis of putative antisense oligonucleotides which incorporate a guanidine backbone in place of RNA’s natural phosphodiester backbone. My work saw the synthesis of over 20 nucleoside compounds of varying bases A, U, and G. I additionally screened desired compounds and intermediates as antibacterial agents against 6 strains of bacteria, which led to the discovery of antibacterial activity against Neisseria meningitidis by 6 synthetic compounds. This work was published in Nucleosides, Nucleotides, & Nucleic Acids in 2017.

Van Ostrand, R.; Jacobsen, C.; Delahunty, A.; Stringer, C.; Noorbehesht, R.; Ahmed, H.; Awad, A. M., Synthesis and antibacterial activity of 5′-tetrachlorophthalimido and 5′-azido 5′-deoxyribonucleosides. Nucleosides, Nucleotides and Nucleic Acids 2017, 36 (3), 181-197.

Keywords: #ModifiedNucleosides #ModifiedOligonucleotides #NucleosideChemistry #OrganicSynthesis #Synthesis #DNARepair #DNA #Muty #Mutyh #8OG #DavidLab #UCDavis #UndergraduateResearch #TeachingAssistant #Chemistry #NMR #RobertVanOstrand #robertucdavis

RSS Science Daily News

  • New vaccine concept tackles harmful bacteria in the intestine April 3, 2025
    In the fight against bacterial pathogens, researchers are combining vaccination with targeted colonization of the intestine by harmless microorganisms. This approach could potentially mark a turning point in the antibiotics crisis.
  • Animal behavioral diversity at risk in the face of declining biodiversity April 3, 2025
    Drastic declines in biodiversity due to human activities present risks to understanding animal behaviors such as tool use, according to new research. Shrinking animal populations make the study of these behaviors increasingly difficult, underscoring the urgency of targeted conservation efforts and inclusive conservation strategies. Action is needed not only for research, but also to respect […]
  • How the brain and inner ear are formed April 3, 2025
    Researchers have developed a method that shows how the nervous system and sensory organs are formed in an embryo. By labeling stem cells with a genetic 'barcode', they have been able to follow the cells' developmental journey and discover how the inner ear is formed in mice. The discovery could provide important insights for future […]
  • Western diet causes inflammation, traditional African food protects April 3, 2025
    A switch of just two weeks from a traditional African diet to a Western diet causes inflammation, reduces the immune response to pathogens, and activates processes associated with lifestyle diseases. Conversely, an African diet rich in vegetables, fiber, and fermented foods has positive effects. This study highlights the significant impact of diet on the immune […]
  • Solar wave squeezed Jupiter's magnetic shield to unleash heat April 3, 2025
    A solar wind event from 2017 that hit Jupiter and compressed its magnetosphere created a hot region spanning half Jupiter's circumference.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616