Home » Savannah Conlon

Savannah Conlon

Savannah Conlon

LinkedIn

Education:

B.S. Chemistry, Minor in Biology, University of California, Santa Cruz, 2017

From: Grass Valley, California

Joined David Lab: January 2018

Outside of lab: I enjoy long runs and skiing. You can catch me in the kitchen several nights a week because I love cooking!

Research in David Lab:

Oxidative damage to our DNA by endogenous or exogenous sources must be repaired to maintain the integrity of the genome. This type of damage is repaired via the base excision repair pathway, where glycosylases recognize and initiate repair. Specifically, I study the NEIL family of DNA glycosylases, which are required for the removal of oxidized bases from DNA. One of these enzymes, NEIL1, has been heavily characterized by our laboratory. NEIL1 has the ability to recognize and cleave a variety of oxidized lesions from differing DNA contexts. Previous work has shown that there are two wild type isoforms of this enzyme due to pre-mRNA editing by ADAR1. The two forms differ at one amino acid position, yielding either lysine or arginine at position 242 of the enzyme. Each form has different substrate preferences, some of which are shown below; therefore, it is of particular interest to investigate other differences between them. I am continuing to evaluate the intrinsic rate of glyosidic bond cleavage and the binding affinity of each form of NEIL1 on different lesions, and plan to continue this investigation with NEIL3. After seeing such a distinct difference between the two isoforms of NEIL1 in vitro, I am also interested in comparing repair initiated by each isoform in cellular assays.  I want to determine if the same trends that occur in vitro also exist in a cellular context. My hope is to further elucidate the cellular benefit of having two such isoforms.

 

Previous Research Experience:

I worked in Dr. Scott Lokey’s lab at UC Santa Cruz as an undergraduate, where I studied cyclic peptides inspired by natural products. Specifically, I worked on optimizing peptide macrocyclization by studying the effect of various reaction conditions. I aimed to help determine how to limit the unwanted oligomerization of peptides during cyclization.

RSS Science Daily News

  • The magic of light: Dozens of images hidden in a single screen May 27, 2025
    New technology that uses light's color and spin to display multiple images.
  • 'Raindrops in the Sun's corona': New adaptive optics shows stunning details of our star's atmosphere May 27, 2025
    Scientists have produced the finest images of the Sun's corona to date. To make these high-resolution images and movies, the team developed a new 'coronal adaptive optics' system that removes blur from images caused by the Earth's atmosphere. Their ground-breaking results pave the way for deeper insight into coronal heating, solar eruptions, and space weather, […]
  • The ocean seems to be getting darker May 27, 2025
    Scientists, who have spent more than a decade examining the impact of artificial light at night on the world's coasts and oceans, have shown that more than one-fifth of the global ocean -- an area spanning more than 75 million sq km -- has been the subject of ocean darkening over the past two decades. […]
  • Why after 2000 years we still don't know how tickling works May 27, 2025
    How come you can't tickle yourself? And why can some people handle tickling perfectly fine while others scream their heads off? Neuroscientists argue that we should take tickle research more seriously.
  • New fuel cell could enable electric aviation May 27, 2025
    Engineers developed a fuel cell that offers more than three times as much energy per pound compared to lithium-ion batteries. Powered by a reaction between sodium metal and air, the device could be lightweight enough to enable the electrification of airplanes, trucks, or ships.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616