Home » Savannah Conlon

Savannah Conlon

Savannah Conlon

LinkedIn

Education:

B.S. Chemistry, Minor in Biology, University of California, Santa Cruz, 2017

From: Grass Valley, California

Joined David Lab: January 2018

Outside of lab: I enjoy long runs and skiing. You can catch me in the kitchen several nights a week because I love cooking!

Research in David Lab:

Oxidative damage to our DNA by endogenous or exogenous sources must be repaired to maintain the integrity of the genome. This type of damage is repaired via the base excision repair pathway, where glycosylases recognize and initiate repair. Specifically, I study the NEIL family of DNA glycosylases, which are required for the removal of oxidized bases from DNA. One of these enzymes, NEIL1, has been heavily characterized by our laboratory. NEIL1 has the ability to recognize and cleave a variety of oxidized lesions from differing DNA contexts. Previous work has shown that there are two wild type isoforms of this enzyme due to pre-mRNA editing by ADAR1. The two forms differ at one amino acid position, yielding either lysine or arginine at position 242 of the enzyme. Each form has different substrate preferences, some of which are shown below; therefore, it is of particular interest to investigate other differences between them. I am continuing to evaluate the intrinsic rate of glyosidic bond cleavage and the binding affinity of each form of NEIL1 on different lesions, and plan to continue this investigation with NEIL3. After seeing such a distinct difference between the two isoforms of NEIL1 in vitro, I am also interested in comparing repair initiated by each isoform in cellular assays.  I want to determine if the same trends that occur in vitro also exist in a cellular context. My hope is to further elucidate the cellular benefit of having two such isoforms.

 

Previous Research Experience:

I worked in Dr. Scott Lokey’s lab at UC Santa Cruz as an undergraduate, where I studied cyclic peptides inspired by natural products. Specifically, I worked on optimizing peptide macrocyclization by studying the effect of various reaction conditions. I aimed to help determine how to limit the unwanted oligomerization of peptides during cyclization.

RSS Science Daily News

  • New Orleans is sinking—and so are its $15 billion flood defenses June 29, 2025
    Parts of New Orleans are sinking at alarming rates — including some of the very floodwalls built to protect it. A new satellite-based study finds that some areas are losing nearly two inches of elevation per year, threatening the effectiveness of the city's storm defenses.
  • Record-breaking 10-billion-year radio halo just rewrote the universe’s origin story June 28, 2025
    A newly discovered radio halo, 10 billion light-years away, reveals that galaxy clusters in the early universe were already steeped in high-energy particles. The finding hints at ancient black hole activity or cosmic particle collisions fueling this energy.
  • A mysterious mineral in asteroid Ryugu may rewrite planetary history June 28, 2025
    A surprising discovery from a tiny grain of asteroid Ryugu has rocked scientists' understanding of how our Solar System evolved. Researchers found djerfisherite—a mineral typically born in scorching, chemically reduced conditions and never before seen in Ryugu-like meteorites—inside a sample returned by Japan’s Hayabusa2 mission. Its presence suggests either Ryugu once experienced unexpectedly high temperatures […]
  • A giant pulse beneath Africa could split the continent — and form an ocean June 27, 2025
    Beneath the Afar region in Ethiopia, scientists have discovered pulsing waves of molten rock rising from deep within the Earth — a geological heartbeat that could eventually split Africa in two. These rhythmic surges of mantle material are helping to stretch and thin the continent’s crust, setting the stage for a new ocean to form […]
  • World’s largest camera just snapped the Universe in 3,200 megapixels June 27, 2025
    The LSST camera at the Vera C. Rubin Observatory has released its jaw-dropping first images, each capturing 45 times the area of the full moon in one shot. Over the next ten years, this cosmic giant will scan the southern sky in ultra-HD, helping scientists uncover everything from asteroids to the secrets of dark energy.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616