Home » Posts tagged 'AlkC'

Tag Archives: AlkC

New Manuscript Published: Selective base excision repair of DNA damage by the non‐base‐flipping DNA glycosylase AlkC.

New Manuscript Published: Selective base excision repair of DNA damage by the non‐base‐flipping DNA glycosylase AlkC.

The preservation of genomic integrity performed by DNA repair machinery is crucial for living organisms, and malfunctions in DNA repair machinery can have far-reaching and devastating effects on a cell’s ability to attain precise DNA replication, properly regulate cell differentiation and self-renewal, and to regulate cell growth and apoptosis, among other important cellular functions. Mutations of critical residues in DNA repair proteins can drastically reduce DNA repair capability in cells, allowing for a build-up of genomic mutations. Inherited variants in DNA repair proteins such as glycosylase MUTYH have been linked to a predisposition to tumors in patients with disease MUTYH Associated Polyposis (MAP). The David Lab is interested in delineating DNA repair mechanisms to help shed light on the etiology of cancer and other diseases, providing mechanistic and structural information that may be used, for example, to design drug molecules targeting DNA repair proteins.

New work from the David Lab examined the selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC, which primarily targets alkylated-DNA damage product N3-methyladenine (3mA). This work details how AlkC selects for and excises 3mA with its non-base-flipping mechanism. The authors carried out a comprehensive phylogenetic, biochemical, and structural comparison of AlkC and AlkD proteins for comparison, which shows, notably, characteristics important for substrate specificity and why bulkier substrates are not preferred. Interestingly, AlkC’s excision mechanism involves using HEAT-like repeat domains and in most cases Ig-like domains to introduce a kink in the target DNA, helping to expose the target nucleobase, allowing for subsequent insertion of the enzyme active site to excise its target.

Click here to read more about AlkC’s non-base-flipping mechanism.

 

Source:

The EMBO Journal 

 

RSS Science Daily News

  • New evidence on the relationship between moderate wine consumption and cardiovascular health December 18, 2024
    Light and moderate consumption of wine is associated with a lower risk of cardiovascular complications, according to a multicenter study. The study is based on the analysis of a biomarker of wine intake -- specifically, tartaric acid, present in grapes. It was carried out in 1,232 participants in the PREDIMED project, a major scientific epidemiological […]
  • Syphilis had its roots in the Americas December 18, 2024
    A research team has taken a crucial step towards resolving a long-standing controversy -- was syphilis introduced to Europe from the Americas at the end of the 15th century, or had it been there all along? Ancient pathogen genomes from skeletons that pre-date 1492 confirm its introduction from the Americas, but its world-wide spread remains […]
  • A 'remelting' of lunar surface adds a wrinkle to mystery of Moon's true age December 18, 2024
    Scientists propose a 'remelting' of the Moon's surface 4.35 billion years ago due to the tidal pull of Earth causing widespread geological upheaval and intense heating.
  • Thorium film could replace crystals in atomic clocks of the near future December 18, 2024
    Atomic clocks that excite the nucleus of thorium-229 embedded in a transparent crystal when hit by a laser beam could yield the most accurate measurements ever of time and gravity, and even rewrite some of the fundamental laws of physics. Thorium-229-doped crystals are both scarce and radioactive. A thin film using a dry precursor of […]
  • How to print a car: High-performance multi-material 3D printing techniques December 18, 2024
    A future where lightweight car parts can be made with a 3D printer is here, thanks to multi-material additive manufacturing research.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616