Home » Uncategorized » New Manuscript Published: The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn2+ Ligands and Roles in Damage Recognition and Repair.

New Manuscript Published: The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn2+ Ligands and Roles in Damage Recognition and Repair.

New Manuscript Published: The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn2+ Ligands and Roles in Damage Recognition and Repair.

A recent publication from the David, Siegel and Lim (Academia Sinica, Taiwan) labs (Nuñez et al., JACS, 2018) provides insight into the coordination sphere and critical role of a Zn2+ metal binding site in the DNA repair glycosylase MUTYH. Genome database mining and sequence alignment of MUTYH orthologs, along with computational modeling, identified and supported Zn2+ ligation by four Cys residues. Three of the Cys residues lie in an interdomain connector region unique to mammalian MutY enzymes, while the 4th Cys is located in close proximity to the Fe-S cluster DNA binding domain. The functional consequences of reduced Zn2+ chelation on MUTYH-mediated DNA repair activity evaluated using a battery of in vitro and cell-based assays revealed the importance of Zn-coordination in recognition of the damaged DNA substrate. The critical nature of the “Zinc Linchpin Motif” suggests additional functions unique to higher organisms in damage signaling and crosstalk with other DNA repair pathways.

More information at https://pubs.acs.org/doi/10.1021/jacs.8b06923.

Source:

J. Am. Chem. Soc. 2018, 140, 13260-13271.

Keywords: #Muty #Mutyh #BER #DNA #DNARepair #ZincLinchpinMotif #Zn2+ #8OG #DavidLab #UCDavis

 

 

 

 

 

RSS Science Daily News

  • How to print a car: High-performance multi-material 3D printing techniques December 18, 2024
    A future where lightweight car parts can be made with a 3D printer is here, thanks to multi-material additive manufacturing research.
  • Prehistoric rock in Japan reveals clues to major ocean anoxic event December 17, 2024
    Researchers analyzed radioisotopes in layers of fossilized volcanic ash. Decay of uranium to lead within tiny crystals enabled scientists to precisely pinpoint dates for certain events. They determined this event occurred 119.5 million years ago -- coincident with evidence for massive volcanic eruptions -- and lasted for 1.1 million years. Study results help scientists better […]
  • Physicists 'bootstrap' validity of string theory December 17, 2024
    String theory remains elusive as a 'provable' phenomenon. But a team of physicists has now taken a significant step forward in validating string theory by using an innovative mathematical method that points to its 'inevitability.'
  • New discovery by scientists redefines magnetism December 17, 2024
    Step into a world so tiny, it defies imagination -- the nanoscale. Picture a single strand of hair, now shrink it a million times. You've arrived. Here, atoms and molecules are the architects of reality, building properties and phenomena that challenge everything we thought we knew -- until now. Researchers have now unlocked a stunning […]
  • Binary star found near our galaxy's supermassive black hole December 17, 2024
    An international team of researchers has detected a binary star orbiting close to Sagittarius A*, the supermassive black hole at the centre of our galaxy. It is the first time a stellar pair has been found in the vicinity of a supermassive black hole. The discovery helps us understand how stars survive in environments with […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616