Home » News » Recent Article Published: Unique H-bonding of Adenine with oxidatively damaged base 8-oxoguanosine enables specific recognition and repair by DNA glycosylase MutY.

Recent Article Published: Unique H-bonding of Adenine with oxidatively damaged base 8-oxoguanosine enables specific recognition and repair by DNA glycosylase MutY.

Recent Article Published by Sheila David’s Lab: Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY.

Majumdar, C.; Mckibbin, P.L.; Krajewski, A.E.; Manlove, A.H.; Lee, J.K.; David, S.S.
J. Am. Soc. 2020. 142, 48, 20340–20350.

      DNA repair protein MutY employs specific interactions to differentiate OG:A basepairs from canonical G:C and T:A basepairs. Prior work from our lab has focused on understanding the structural requirements of OG on lesion recognition and catalysis, and we have shown that MutY relies on the exocyclic 2-amino group of OG to identify and distinguish OG:A from other basepairs. Additionally, we’ve shown that OG binding induces conformational changes that influence A excision.

     This new work uses structure-activity relationships (SARs) to identify the structural features of A that influence OG:A recognition, verification, base excision, and overall cellular repair. We correlate observed in vitro MutY activity on A analogue substrates with their experimental and calculated acidities to provide mechanistic insight into the factors influencing MutY base excision efficiency. Our results herein can be used to guide future design of MutY/MUTYH specific probes to monitor the activity, or lack thereof, of MutY/MUTYH variants. These results can also applied toward the development of MUTY/MUTYH specific inhibitors that may find utility in cancer therapeutics.

Click on the link or graphical abstract to find out more!

https://pubs.acs.org/doi/abs/10.1021/jacs.0c06767#

 

RSS Science Daily News

  • New vaccine concept tackles harmful bacteria in the intestine April 3, 2025
    In the fight against bacterial pathogens, researchers are combining vaccination with targeted colonization of the intestine by harmless microorganisms. This approach could potentially mark a turning point in the antibiotics crisis.
  • Animal behavioral diversity at risk in the face of declining biodiversity April 3, 2025
    Drastic declines in biodiversity due to human activities present risks to understanding animal behaviors such as tool use, according to new research. Shrinking animal populations make the study of these behaviors increasingly difficult, underscoring the urgency of targeted conservation efforts and inclusive conservation strategies. Action is needed not only for research, but also to respect […]
  • How the brain and inner ear are formed April 3, 2025
    Researchers have developed a method that shows how the nervous system and sensory organs are formed in an embryo. By labeling stem cells with a genetic 'barcode', they have been able to follow the cells' developmental journey and discover how the inner ear is formed in mice. The discovery could provide important insights for future […]
  • Machine learning helps construct an evolutionary timeline of bacteria April 3, 2025
    Scientists have helped to construct a detailed timeline for bacterial evolution, suggesting some bacteria used oxygen long before evolving the ability to produce it through photosynthesis.
  • Western diet causes inflammation, traditional African food protects April 3, 2025
    A switch of just two weeks from a traditional African diet to a Western diet causes inflammation, reduces the immune response to pathogens, and activates processes associated with lifestyle diseases. Conversely, an African diet rich in vegetables, fiber, and fermented foods has positive effects. This study highlights the significant impact of diet on the immune […]

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616