Home » News » Recent Article Published: Unique H-bonding of Adenine with oxidatively damaged base 8-oxoguanosine enables specific recognition and repair by DNA glycosylase MutY.

Recent Article Published: Unique H-bonding of Adenine with oxidatively damaged base 8-oxoguanosine enables specific recognition and repair by DNA glycosylase MutY.

Recent Article Published by Sheila David’s Lab: Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY.

Majumdar, C.; Mckibbin, P.L.; Krajewski, A.E.; Manlove, A.H.; Lee, J.K.; David, S.S.
J. Am. Soc. 2020. 142, 48, 20340–20350.

      DNA repair protein MutY employs specific interactions to differentiate OG:A basepairs from canonical G:C and T:A basepairs. Prior work from our lab has focused on understanding the structural requirements of OG on lesion recognition and catalysis, and we have shown that MutY relies on the exocyclic 2-amino group of OG to identify and distinguish OG:A from other basepairs. Additionally, we’ve shown that OG binding induces conformational changes that influence A excision.

     This new work uses structure-activity relationships (SARs) to identify the structural features of A that influence OG:A recognition, verification, base excision, and overall cellular repair. We correlate observed in vitro MutY activity on A analogue substrates with their experimental and calculated acidities to provide mechanistic insight into the factors influencing MutY base excision efficiency. Our results herein can be used to guide future design of MutY/MUTYH specific probes to monitor the activity, or lack thereof, of MutY/MUTYH variants. These results can also applied toward the development of MUTY/MUTYH specific inhibitors that may find utility in cancer therapeutics.

Click on the link or graphical abstract to find out more!

https://pubs.acs.org/doi/abs/10.1021/jacs.0c06767#

 

RSS Science Daily News

  • Fossils in the 'Cradle of Humankind' may be more than a million years older than previously thought June 27, 2022
    For decades, scientists have studied these fossils of early human ancestors and their long-lost relatives. Now, a dating method developed by geologists just pushed the age of some of these fossils found at the site of Sterkfontein Caves back more than a million years. This would make them older than Dinkinesh, also called Lucy, the […]
  • The heat is on: Traces of fire uncovered dating back at least 800,000 years June 27, 2022
    Scientists reveal an advanced, innovative method that they have developed and used to detect nonvisual traces of fire dating back at least 800,000 years -- one of the earliest known pieces of evidence for the use of fire. The newly developed technique may provide a push toward a more scientific, data-driven type of archaeology, but […]
  • The octopus' brain and the human brain share the same 'jumping genes' June 24, 2022
    The neural and cognitive complexity of the octopus could originate from a molecular analogy with the human brain, according to a new study. The research shows that the same 'jumping genes' are active both in the human brain and in the brain of two species, Octopus vulgaris, the common octopus, and Octopus bimaculoides, the Californian […]
  • Giant bacteria found in Guadeloupe mangroves challenge traditional concepts June 23, 2022
    Researchers describe the morphological and genomic features of a 'macro' microbe' -- a giant filamentous bacterium composed of a single cell discovered in the mangroves of Guadeloupe. Using various microscopy techniques, the team also observed novel, membrane-bound compartments that contain DNA clusters dubbed 'pepins.'
  • Humans can't, but turtles can: Reduce weakening and deterioration with age June 23, 2022
    Evolutionary theories of ageing predict that all living organisms weaken and deteriorate with age (a process known as senescence) -- and eventually die. Now, researchers show that certain animal species, such as turtles (including tortoises) may exhibit slower or even absent senescence when their living conditions improve.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616