Home » News » Recent Article Published: Unique H-bonding of Adenine with oxidatively damaged base 8-oxoguanosine enables specific recognition and repair by DNA glycosylase MutY.

Recent Article Published: Unique H-bonding of Adenine with oxidatively damaged base 8-oxoguanosine enables specific recognition and repair by DNA glycosylase MutY.

Recent Article Published by Sheila David’s Lab: Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY.

Majumdar, C.; Mckibbin, P.L.; Krajewski, A.E.; Manlove, A.H.; Lee, J.K.; David, S.S.
J. Am. Soc. 2020. 142, 48, 20340–20350.

      DNA repair protein MutY employs specific interactions to differentiate OG:A basepairs from canonical G:C and T:A basepairs. Prior work from our lab has focused on understanding the structural requirements of OG on lesion recognition and catalysis, and we have shown that MutY relies on the exocyclic 2-amino group of OG to identify and distinguish OG:A from other basepairs. Additionally, we’ve shown that OG binding induces conformational changes that influence A excision.

     This new work uses structure-activity relationships (SARs) to identify the structural features of A that influence OG:A recognition, verification, base excision, and overall cellular repair. We correlate observed in vitro MutY activity on A analogue substrates with their experimental and calculated acidities to provide mechanistic insight into the factors influencing MutY base excision efficiency. Our results herein can be used to guide future design of MutY/MUTYH specific probes to monitor the activity, or lack thereof, of MutY/MUTYH variants. These results can also applied toward the development of MUTY/MUTYH specific inhibitors that may find utility in cancer therapeutics.

Click on the link or graphical abstract to find out more!

https://pubs.acs.org/doi/abs/10.1021/jacs.0c06767#

 

RSS Science Daily News

  • New Orleans is sinking—and so are its $15 billion flood defenses June 29, 2025
    Parts of New Orleans are sinking at alarming rates — including some of the very floodwalls built to protect it. A new satellite-based study finds that some areas are losing nearly two inches of elevation per year, threatening the effectiveness of the city's storm defenses.
  • Record-breaking 10-billion-year radio halo just rewrote the universe’s origin story June 28, 2025
    A newly discovered radio halo, 10 billion light-years away, reveals that galaxy clusters in the early universe were already steeped in high-energy particles. The finding hints at ancient black hole activity or cosmic particle collisions fueling this energy.
  • A mysterious mineral in asteroid Ryugu may rewrite planetary history June 28, 2025
    A surprising discovery from a tiny grain of asteroid Ryugu has rocked scientists' understanding of how our Solar System evolved. Researchers found djerfisherite—a mineral typically born in scorching, chemically reduced conditions and never before seen in Ryugu-like meteorites—inside a sample returned by Japan’s Hayabusa2 mission. Its presence suggests either Ryugu once experienced unexpectedly high temperatures […]
  • A giant pulse beneath Africa could split the continent — and form an ocean June 27, 2025
    Beneath the Afar region in Ethiopia, scientists have discovered pulsing waves of molten rock rising from deep within the Earth — a geological heartbeat that could eventually split Africa in two. These rhythmic surges of mantle material are helping to stretch and thin the continent’s crust, setting the stage for a new ocean to form […]
  • World’s largest camera just snapped the Universe in 3,200 megapixels June 27, 2025
    The LSST camera at the Vera C. Rubin Observatory has released its jaw-dropping first images, each capturing 45 times the area of the full moon in one shot. Over the next ten years, this cosmic giant will scan the southern sky in ultra-HD, helping scientists uncover everything from asteroids to the secrets of dark energy.

Contact:

Dr. Sheila S. David
ssdavid@ucdavis.edu
(530)-752-4280

Department of Chemistry
One Shields Ave.
Davis, CA 95616